Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 21(36): 7467-7472, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37670575

RESUMO

Radiohalogens with a short half-life are useful radioisotopes for radiotheranostics. Astatine-211 is an α-emitting radiohalogen and is expected to be applicable to targeted α therapy. A neopentyl labeling group is an effective hydrophilic labeling unit for various radiohalogens, which includes 211At. In this study, a 1-(N,N-dialkylcarbamoyl)-1,1-difluoromethanesulfonyl (CDf) ester was developed as a stable precursor for labeling with 211At, 77Br and 125I through a neopentyl labeling group. The CDf ester remained stable in an acetonitrile solution at room temperature and enabled the successful syntheses of 211At-labeled compounds in a highly radiochemical conversion in the presence of K2CO3. 77Br- and 125I-labeled compounds can be prepared from the CDf ester without a base. The utility of the CDf ester was demonstrated in the synthesis of a benzylguanidine with a neopentyl 211At-labeling group. The developed method afforded a 32% radiochemical yield of 211At-labeled benzylguanidine. However, a partial deastatination was observed under acidic conditions during the removal of an N-Boc protecting group. Deprotecting these groups under milder acidic conditions may improve the radiochemical yield. In conclusion, the CDf ester facilitates the syntheses of 211At, 125I and 77Br-labeled compounds that use a neopentyl labeling group for radiotheranostic applications. Further optimization of protecting groups and reaction conditions should enhance the total radiochemical yield of the 211At-labeled compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...